16 research outputs found

    Herbal Remedies for Combating Irradiation: a Green Antiirradiation Approach

    Get PDF
    Plants play important roles in human life not only as suppliers of oxygen but also as a fundamental resource to sustain the human race on this earthly plane. Plants also play a major role in our nutrition by converting energy from the sun during photosynthesis. In addition, plants have been used extensively in traditional medicine since time immemorial. Information in the biomedical literature has indicated that many natural herbs have been investigated for their efficacy against lethal irradiation. Pharmacological studies by various groups of investigators have shown that natural herbs possess significant radioprotective activity. In view of the immense medicinal importance of natural product based radioprotective agents, this review aims at compiling all currently available information on radioprotective agents from medicinal plants and herbs, especially the evaluation methods and mechanisms of action. In this review we particularly emphasize on ethnomedicinal uses, botany, phytochemistry, mechanisms of action and toxicology. We also describe modern techniques for evaluating herbal samples as radioprotective agents. The usage of herbal remedies for combating lethal irradiation is a green antiirradiation approach for the betterment of human beings without high cost, side effects and toxicity

    Standardized Polyalthia longifolia leaf extract (PLME) inhibits cell proliferation and promotes apoptosis: The anti-cancer study with various microscopy methods

    Get PDF
    Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00 mu g/mL at 24 h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC50 value of 51.07 mu g/mL at 24 h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis

    MicroRNAs: Association with radioresistant and potential uses of natural remedies as green gene therapeutic approaches

    Get PDF
    Radiotherapy plays an essential primary role in cancer patients. Regardless of its significant advances in treatment options, tumor recurrence and radio-resistance in cancer cells still occur in a high percentage of patients. Furthermore, the over expression of miRNAs accompanies the development of radio-resistant cancer cells. Consequently, miRNAs might serve as therapeutic targets for the treatment of radio-resistance in cancer cells. The findings of the current research also signify that the use of a natural anti-miRNA substance could inhibit specific miRNAs, and, concurrently, these natural remedies could exhibit radioprotective activity against the healthy cells during radiotherapy. Therefore, in this review, we have reported the association of miRNAs with radio-resistance and the potential uses of natural remedies as green gene therapeutic approaches, as well as radioprotectors against the adverse effects of irradiation on healthy cells during radiotherapy

    MicroRNA pathways : an emerging role in identification of therapeutic strategies

    Get PDF
    For years researchers have exerted every effort to improve the influential roles of microRNA (miRNA) in regulating genes that direct mammalian cell development and function. In spite of numerous advancements, many facets of miRNA generation remain unresolved due to the perplexing regulatory networks. The biogenesis of miRNA, eminently endures as a mystery as no universal pathway defines or explicates the variegation in the rise of miRNAs. Early evidence in biogenesis ignited specific steps of being omitted or replaced that eventuate in the individual miRNAs of different mechanisms. Understanding the basic foundation concerning how miRNAs are generated and function will help with diagnostic tools and therapeutic strategies. This review encompasses the canonical and the non-canonical pathways involved in miRNA biogenesis, while elucidating how miRNAs regulate genes at the nuclear level and also the mechanism that lies behind circulating miRNAs

    MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancer diagnosis and prognosis

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery

    Functional analysis of circular RNAs

    No full text
    10.1007/978-981-13-1426-1_8Advances in Experimental Medicine and Biology108795-10

    Digital holographic imaging as a method for quantitative, live cell imaging of drug response to novel targeted cancer therapies

    No full text
    Digital holographic imaging (DHI) is a noninvasive, live cell imaging technique that enables long-term quantitative visualization of cells in culture. DHI uses phase-shift imaging to monitor and quantify cellular events such as cell division, cell death, cell migration, and drug responses. In recent years, the application of DHI has expanded from its use in the laboratory to the clinical setting, and currently it is being developed for use in theranostics. Here, we describe the use of the DHI platform HoloMonitorM4 to evaluate the effects of novel, targeted cancer therapies on cell viability and proliferation using the HeLa cancer cell line as a model. We present single cell tracking and population-wide analysis of multiple cell morphology parameters
    corecore